Answer:

Explanation:
Light rays coming from moon is blocked by the pencil
so as per figure we know that angle subtended by pencil and angle subtended by moon must be same
so we have

so we have

so we have

Answer:

Explanation:
Given data
Force F=2 N
Length L=17 cm = 0.17 m
Spring Constant k=42 N/m
To find
Relaxed length of the spring
Solution
From Hooke's Law we know that

As per Bernuolli's Theorem total energy per unit mass is given as

now from above equation




now by above equation


Part B)
Now energy per unit weight



Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Answer:
wavelength.
Explanation:
One complete expression of a waveform beginning at a certain point, progressing through the zero line to the wave’s highest (crest) and lowest (trough) points, and returning to the same value as the starting point is called a is called wavelength. Its can be also defined as the distance between two successive crests or trough points in wave form.