Answer:
Conduction heat transfer is the transfer of <em>heat by means of molecular excitement within a material without bulk motion</em> of the matter.
Explanation:
Conduction heat transfer in gases and liquids is due to the collisions and diffusion of the molecules during heir random motion.
Answer:
Explanation:
The correct answer is option C.
When the battery is operating a remote control toy the energy is converted from potential energy to the kinetic energy.
A battery stores electrical potential from the chemical reaction.
When the circuit is connected to the potential energy of the battery helps in the movement of the toy.
The energy produced by the movement of the control toy is kinetic energy.
Hence, we can say that Potential energy is changed to kinetic energy
Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:

ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Finally, you obtain for E:

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
Answer:


Explanation:
= Initial momentum of the pin = 13 kg m/s
= Initial momentum of the ball = 18 kg m/s
= Momentum of the ball after hit
= Angle ball makes with the horizontal after hitting the pin
= Angle the pin makes with the horizotal after getting hit by the ball
Momentum in the x direction

Momentum in the y direction


The pin's resultant velocity is 

The pin's resultant direction is
below the horizontal or to the right.