Answer:
Vmax=11.53 m/s
Explanation:
from conservation of energy

Spring potential energy =potential energy due to elevation
0.5*k*x²= mg
=mgh
0.5*k*2.3²= 430*9.81*6
k=9568.92 N/m
For safety reason
k"=1.13 *k= 1.13*9568.92
k"=10812.88 N/m
agsin from conservation of energy

spring potential energy=change in kinetic energy
0.5*k"*x²=0.5*m*
10812.88 *2.3²=430*
=11.53 m/s
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
The stratosphere is the layer above the troposphere
Answer: Yes
Explanation:
Velocity
is defined as the distance traveled
in a specific time
:

If you are traveling at
a distance
, then the time it will take you to be at work is:


This means you will make it on time, because this time is less than 0.25 h.
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance: