let the distance of pillar is "r" from one end of the slab
So here net torque must be balance with respect to pillar to be in balanced state
So here we will have

here we know that
mg = 19600 N
Mg = 400,000 N
L = 20 m
from above equation we have



so pillar is at distance 10.098 m from one end of the slab
Answer:
Angle with the +x axis is θ = 79.599degree
Then the velocity of owner = 1.235m/s
Explanation:
Given that the mass of dog is m1 =26.2 kg
velocity of dog is u1 = 3.02 m/s (north)
mass of cat is m2 = 5.3 kg
velocity is u2 = 2.74 m/s (east )
Mass of owner is M = 65.1 kg
Consider the east direction along +x axis andnorth along +y
momentum of dog is Py = m1 x u1
= 79.124 kg.m/s (j)
momentum of cat is Px = m2 x u2
= 14.522 kg.m/s (i)
Then the net magnitude of momentum is P = (Px2 + Py2)1/2
= 80.445
Angle with the +x axis is θ =tan-1(Py / Px ) = 79.599 degree
Then the velocity of owner is v = P / M = 1.235 m/s
Answer:
Part a)

Part b)

Explanation:
As per momentum conservation we know that there is no external force on this system so initial and final momentum must be same
So we will have




Part b)
By equation of kinetic energy we have




Answer:
Explanation:
Parameters given:
Mass of Puck 1, m = 1 kg
Mass of Puck 2, M = 1 kg
Initial velocity of Puck 1, u = 20 m/s
Initial velocity of Puck 2, U = 0 m/s
Final velocity of Puck 1, v = 5 m/s
Since we are told that momentum is conserved, we apply the principle of conservation of momentum:
Total initial momentum of the system = Total final momentum of the system
mu + MU = mv + MV
(1 * 20) + (1 * 0) = (1 * 5) + (1 * V)
20 = 5 + V
V = 20 - 5 = 15 m/s
Puck 2 moves with a velocity of 15 m/s