1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
3 years ago
15

1.(16 pts.) Find the volume of the solid obtained by revolving the region enclosed by y = xex , y = 0 and x = 1 about the x-axis

.
Physics
1 answer:
MrRa [10]3 years ago
8 0

Answer:

<em>The Volume is 5.018 cubic units</em>

Explanation:

<u>Volume Of A Solid Of Revolution</u>

Let f(x) be a continuous function defined in an interval [a,b], if we take the area enclosed by f(x) between x=a, x=b and revolve it around the x-axis, we get a solid whose volume can be computed as

\displaystyle V=\pi \int_a^bf^2(x)dx

It's called the disk method. There are other available methods to compute the volume.

We have

f(x)=xe^x

And the boundaries defined as x=1, y=0 and revolved around the x-axis. The left endpoint of the integral is easily identified as x=0, because it defines the beginning of the region to revolve. So we need to compute

\displaystyle V=\pi \int_0^1(xe^x)^2dx=\pi \int_0^1x^2e^{2x}dx

We need to first determine the antiderivative

\displaystyle I=\int x^2e^{2x}dx

Let's integrate by parts using the formula

\displaystyle \int u.dv=u.v-\int v.du

We pick u=x^2,\ dv=e^{2x}dx

Then du=2xdx,\ v=\frac{e^{2x}}{2}

Applying by parts:

\displaystyle I=x^2\frac{e^{2x}}{2}-\int 2x\frac{e^{2x}}{2}dx

\displaystyle I=\frac{x^2e^{2x}}{2}-\int xe^{2x}dx

Now we solve

\displaystyle I_1=\int xe^{2x}dx

Making u=x,\ dv=e^{2x}dx

\displaystyle du=dx,\ v=\frac{e^{2x}}{2}

Applying by parts again:

\displaystyle I_1=x\frac{e^{2x}}{2}-\int \frac{e^{2x}}{2}dx

\displaystyle I_1=\frac{xe^{2x}}{2}-\frac{1}{2}\int e^{2x}dx

The last integral is directly computed

\displaystyle \int e^{2x}dx=\frac{e^{2x}}{2}

Replacing every integral computed above

\displaystyle I=\frac{x^2e^{2x}}{2}-\left(\frac{xe^{2x}}{2}-\frac{1}{2}\frac{e^{2x}}{2}\right)

Simplifying

\displaystyle I=\dfrac{\left(2x^2-2x+1\right)\mathrm{e}^{2x}}{4}

Now we compute the definite integral as the volume

V=\pi \left[\dfrac{\left(2(1)^2-2(1)+1\right)\mathrm{e}^{2(1)}-\left(2(0)^2-2(0)+1\right)\mathrm{e}^{2(0)}}{4}\right]

Finally

V=\pi \dfrac{\mathrm{e}^2-1}{4}=5.018

The Volume is 5.018 cubic units

You might be interested in
Suppose you first walk 12.5 m in a direction 20° west of north and then 24 m in a direction 40° south of west as shown in the fi
Firlakuza [10]
La ce materie vr ca sunt pe tableta

3 0
3 years ago
What are dot diagrams in Physical Science?​
s344n2d4d5 [400]

Answer:

If you mean Lewis dot diagrams, aka electron-dot diagrams, then these are diagrams that show the bonding between atoms of a molecule, and the lone pairs of electrons that may exist in the molecule.

Explanation:

6 0
3 years ago
A 0.50-kg mass attached to the end of a string swings in a vertical circle (radius 2.0 m). When the mass is at the highest point
il63 [147K]

Answer:

31.1 N

Explanation:

m = mass attached to string = 0.50 kg

r = radius of the vertical circle = 2.0 m

v = speed of the mass at the highest point = 12 m/s

T = force of the string on the mass attached.

At the highest point, force equation is given as

T + mg =\frac{mv^{2}}{r}

Inserting the values

T + (0.50)(9.8) =\frac{(0.50)(12)^{2}}{2}

T = 31.1 N

7 0
3 years ago
Read 2 more answers
True or False: The arrows on a motion map should point in the directions of motion.
slavikrds [6]

Answer:

true,true,false

Explanation:

its false because if it is equal it would show an arrow pointing left and a 20 and the same for the right

3 0
3 years ago
A soccer player kicks a soccer ball with a force of 1.8 N. If the mass of the ball is .43 kg. How fast will the ball accelerate?
Vesnalui [34]

Answer:

The acceleration of the ball is 4.18 [m/s^2]

Explanation:

By Newton's second law we can find the acceleration of the ball

F = m*a\\where:\\F = force applied [N] or [kg*m/s^2]\\m = mass of the ball [kg]\\a = acceleration [m/s^s]

Now we have:

a = F/m\\a = \frac{1.8 [kg*m/s^s]}{0.43[kg]} \\a = 4.18 [kg]

4 0
3 years ago
Read 2 more answers
Other questions:
  • What are two ways that machines can change the way that work is done?
    10·2 answers
  • The difference in electronegativity values between H and O is 1.4. What type of bond will these elements form?
    10·1 answer
  • A test car is driving toward a solid crash-test barrier with a speed of 46 mi/h. Two seconds prior to impact, the car begins to
    9·1 answer
  • What is one example of thermal energy
    10·1 answer
  • At its peak, a tornado is 53.0 m in diameter and carries 465-km/h winds. What is its angular velocity in revolutions per second?
    10·1 answer
  • Consider a hydrogen atom in the n = 1 state. The atom is placed in a uniform B field of magnitude 2.5 T. Calculate the energy di
    5·1 answer
  • 7. If a load of 300N is pulled along the inclined plane shown in the figure, answer the following. B 200 N 0.5m 2m 300 N А i. Ca
    8·1 answer
  • The acceleration of a particle is directly proportional to the square of the time t. When t =0, the particle is at x =24 m. Know
    14·1 answer
  • If you increase the frequency of a wave by 5x whats it’s period?
    15·1 answer
  • An object of mass 2 kg travels through outer space in a straight line at a constant
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!