Answer:
Yes
Explanation:
Yes it is called the refractive index denoted by n
n=sin<i/sin<r
Answer:
b) Betelgeuse would be
times brighter than Sirius
c) Since Betelgeuse brightness from Earth compared to the Sun is
the statement saying that it would be like a second Sun is incorrect
Explanation:
The start brightness is related to it luminosity thought the following equation:
(1)
where
is the brightness,
is the star luminosity and
, the distance from the star to the point where the brightness is calculated (measured). Thus:
b)
and
where
is the Sun luminosity (
) but we don't need to know this value for solving the problem.
is light years.
Finding the ratio between the two brightness we get:

c) we can do the same as in b) but we need to know the distance from the Sun to the Earth, which is
. Then

Notice that since the star luminosities are given with respect to the Sun luminosity we don't need to use any value a simple states the Sun luminosity as the unit, i.e 1. From this result, it is clear that when Betelgeuse explodes it won't be like having a second Sun, it brightness will be 5 orders of magnitude smaller that our Sun brightness.
Explanation:
Large electrical shifting magnets have concentrated retaining strength to lift dense, ferric objects and a deep-reaching magnetization. An immensely useful materials management technique is these electromagnetic rises.
The density of the material would be
25/6 grams per cm^3.
to obtain the result above this is what we do:
density is calculated as: (the mass of the given material or object) / volume of the material
which leads us to 50grams /12cm^3
Answer:
z1/z2
Explanation:
we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.
using the boltzman distribution the probability of finding a particle in energy state

we have
gi to be degeneration of the ith state
ei to be energy of ith state
summation

We have R to be equal to
