The longest wavelength of radiation used to break carbon-carbon bonds is 344 nm.
<u>Explanation:</u>
The longest wavelength of radiation can also be stated as the minimum radiation frequency required to cut carbon-carbon bond should be equal to the threshold energy of the carbon-carbon bonds.
The threshold energy will be equal to the binding energy of the carbon-carbon bonds. As it is known that carbon-carbon bonds exhibit a binding energy of 348 kJ/mole, the threshold energy to break it, is determined as followed.
First, we have to convert the energy from kJ/mol to J, i.e., energy for the carbon-carbon molecules,

As,

So,

Thus,
is the longest wavelength of radiation used to break carbon-carbon bonds.
Answer:
<u>A</u>
Explanation:
The heart cells must contract simultaneously to move blood.
This means that it needs to act fast and efficiently.
Therefore, the connections among heart cells are characterized by :
- having many branches
- having many communicating junctions
The correct option should be <u>A</u>
Answer:
3.38 m/s
Explanation:
Mass of child = m₁ = 25
Initial speed of child = u₁ = 5 m/s
Initial speed of cart = u₂ = 0 m/s
Mass of cart = m₂ = 12 kg
Velocity of cart with child on top = v
This is a case of perfectly inelastic collision

Velocity of cart with child on top is 3.38 m/s
Answer:
what is the action and reaction ?
Explanation: