1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
11

The perimeter of a semicircle is 10.28 kilometers. what is the semicircle's area

Mathematics
1 answer:
alexgriva [62]3 years ago
8 0
The answer is 6.27. Hope this helps.
You might be interested in
A canoe in still water travels at a rate of 12 miles per hour. The current today is traveling at a rate of 2 miles per hour. If
VARVARA [1.3K]

Answer:

It’s 60miles

Step-by-step explanation:

We assume the trip is "d" miles and that the "extra hour" refers to the additional time that a current of 2 mph would add. That is, we assume the reference time is for a current of 0 mph.

The time with no current is ...

 time1 = distance/speed

 time1 = d/12 . . . . hours

With a current of 2 mph in the opposite direction, the time is ...

 time2 = d/(12 -2) = d/10

The second time is 1 hour longer than the first, so we have ...

 time2 = 1 + time1

 d/10 = 1 + d/12

 6d = 60 + 5d . . . . multiply by 60

 d = 60 . . . . . . . . . subtract 5d

The one-way distance is 60 miles.

7 0
2 years ago
Which is the equation of the line that passes through the points (4, 3) and (6, 2)?
Andrew [12]

Answer:

answer is c hope this helps

Step-by-step explanation:

3 0
3 years ago
Terry Bergolt's bank granted him a single-payment loan of $4,400 at an interest rate of 6% exact interest. The term of the loan
Mashutka [201]
The correct answer is (b)
6 0
3 years ago
Read 2 more answers
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
Aida makes $9.25 per hour. Aida works 14 hours in one week. At the end of the week, Aida deposits 1/5 of her total income into a
Lina20 [59]

Answer:

$103.6 left

Step-by-step explanation:

First, multiply the amount she earns an hour times how many hours she worked:

9.25 x 14 = 129.5

Then divide the total by 1/5:

129.5 / 5 = 25.9

Then subtract that value from the total:

129.5 - 25.9 = 103.6

$103.6 is your answer

Hope this helps!

4 0
2 years ago
Read 2 more answers
Other questions:
  • What is the ratio unknown amount (x) invested in company A to the know amount ($24) invested in company B? Write the answer as a
    14·1 answer
  • I need help with geometry homework​
    10·1 answer
  • Write an equation in slope-intercept form of the line that passes through (−2, 5) and (−4, −5).
    7·1 answer
  • Simplify, so that there is only one equation which equals 0.
    15·1 answer
  • Macy of New York sold LeeCo. of Chicago office equipment with a $7,600 list price. Sale terms were 1/10, n/30 FOB New York. Macy
    5·2 answers
  • There are 180 students participating in after school activities. Of those students 40% are boys . How many girls are participati
    13·1 answer
  • Label the vertices and state the Pythagorean Theorem for the following right triangle. Find x.
    9·1 answer
  • What is the answer for r?<br> 13=r/9+8
    6·2 answers
  • 3.05 is greater than or less than 3.024
    10·1 answer
  • Someome please help me
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!