Answer:
A source from which organisms generally take elements is called exchange pool (option B).
Explanation:
Options for this question are:
- <em>Food web.</em>
- <em>Exchange pool.</em>
- <em>Reservoir.</em>
- <em>Biotic community.</em>
The term exchange pool is related to the biogeochemical cycles that exist in nature, referring to the source from which elements present in the environment become part of living organisms.
<u>Exchange pools are the biotic components</u> -like animals and plants- of an ecosystem, which determine the passage of elements between living beings. An element can remain as a reservoir (abiotic) in the soil, and then be incorporated into the exchange pool.
Answer:
<em>The shape of a cell can easily be seen through a light microscope.</em>
Explanation:
A microscope can be defined as a device which is used to visualize things which are otherwise not visible to the naked eye. The shape of a cell can be seen even through a light microscope. For example, an animal cell can be seen to have a round shape under the light microscope, a plant cell will be seen rectangular under the light microscope.
Other microscopes such as the electron microscope can even show the organelles present inside the cell.
B white blood cells function as your immune systems body guards. Osmosis Jones is a great movie to watch in order to learn more about it :)
<h2>Development of Plant Needles</h2>
Explanation:
- Seed of pitch pine treated with colchicine delivered tetraploid seedlings which had thick and sporadic needles and less fortunate tallness and diameter growth than ordinary seedlings.
-
In test of colchicine-initiated polyploidy in pines, researcher found that a significant number of the polyploid plants returned to a diploid development in light of the fact that the polyploid cells partitioned at a more slow rate and were overwhelmed by the more quickly developing diploid cells which encompassed them.
-
The primary needles of both diploid and polyploid plants were more effective at low light intensity than secondary needles, and they had lower compensation points.
Answer:
The correct answer is option b. "Guppy color patterns would change; guppies would produce fewer but larger offspring; the nitrogen excretion rate would increase and the rate of growth of primary producers such as algae would increase".
Explanation:
The Trinidadian guppy is a species of fish with the scientific name <em>Poecilia reticulata</em>. Just like almost all species, its population is regulated for multiple factors, one of them being the presence of predators. The removal of Trinidadian guppy predators would result in multiple consequences:
- Guppy color patterns would change. The fish have a complex coloration determined largely by predation avoidance.
- Guppies would produce fewer but larger offspring. This adaptation has been proved in an experiment at which the fish was introduced one a low predation environment. The report proved that evolution can take place in less than 10 years.
- The nitrogen excretion rate would increase. It has been reported that predation reduce Trinidadian guppy nitrogen excretion by 40%. Removing the predators will case the nitrogen excretion rate to increase due to an increase in the fish food intake.
- The rate of growth of primary producers such as algae would increase. This is an effect of the increase of nitrogen excretion rate, which benefits algae population to growth.