Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2
I am a girl and i have a virgina and im 13 tho so dont touch me lolz mark brainly
Answer:
32.46m/s
Explanation:
Hello,
To solve this exercise we must be clear that the ball moves with constant acceleration with the value of gravity = 9.81m / S ^ 2
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are the follow

Where
Vf = final speed
Vo = Initial speed
=7.3m/S
A = g=acceleration
=9.81m/s^2
X = displacement
=51m}
solving for Vf

the speed with the ball hits the ground is 32.46m/s
Answer:
Explanation:
Since this is a distance v time graph, the slope of the line from 1s to 3s is the velocity. However, it looks like, at t=3, the velocity is 0, so getting the definite velocity is not going to happen. We can estimate it as closely as possible. Since the line is tending from the upper left to the lower right, the slope is negative, so the velocity is also negative. That leaves only C or D as our answers. And the slope is closer to -1 than to -5, so choice D. is the one you want.
work done = force * distance moved (in direction of the force)
force= mass* acceleration
force=58.1N
58.1*(5.8*10^4)
=3,369,800 J