Similarity : inverse square law for strength of force compared with distance.
Answer:
Increases
Explanation:
Since power P=IV
Then it means when current increases, the power increases hence brightness increases. I represent current, P is power and v is voltage.
Current of capacitor when in series connection is given by

where I is current across capacitor, f is frequency, C is capacitance and v is voltage across capacitance. From this second formula, it is evident that an increase in capacitance increases the current across the capacitor. Therefore, if current increases, power also increases leading to an increase in brightness
Answer:
r=6.05km/hr
z=59.1 degree to the horizontal
Explanation:
A bird is flying east at 5.2 kilometers/hour relative to the air. There's a crosswind blowing at 3.1 kilometers/hour toward the south relative to the ground. What is the bird's velocity relative to the ground? State your answer to one decimal place
can be solved using pythagoras theorem
r^2=o^2+a^2
r^2=5.2^2+3.1^2
r^2=36.65
r=6.1km/hr is te birds velocity relative to the ground
tanz=5.2/3.1
z=tan^-1(5,2/3.1)
z=59.1 degree to the horizontal
Answer:
-589.05 J
Explanation:
Using work-kinetic energy theorem, the work done by friction = kinetic energy change of the base runner
So, W = ΔK
W = 1/2m(v₁² - v₀²) where m = mass of base runner = 72.9 kg, v₀ = initial speed of base runner = 4.02 m/s and v₁ = final speed of base runner = 0 m/s(since he stops as he reaches home base)
So, substituting the values of the variables into the equation, we have
W = 1/2m(v₁² - v₀²)
W = 1/2 × 72.9 kg((0 m/s)² - (4.02 m/s)²)
W = 1/2 × 72.9 kg(0 m²/s² - 16.1604 m²/s²)
W = 1/2 × 72.9 kg(-16.1604 m²/s²)
W = 1/2 × (-1178.09316 kgm²/s²)
W = -589.04658 kgm²/s²
W = -589.047 J
W ≅ -589.05 J
Answer:
Ray A = Incidence ray
Ray B = Reflected ray
Explanation:
From the law of reflection,
Normal: This is the line that makes an angle of 90° with the reflecting surface.
Ray A is the incidence ray: This is the ray that srikes the surface of a reflecting surface. The angle formed between the normal and the incidence ray is called the incidence angle
Ray B is the reflected ray: This is the ray leaves the surface of a reflecting surface. The angle formed between the reflected ray and the normal is called reflected angle