Answer:
Step-by-step explanation:
Let the length and breadth of the rectangle be a,b units respectively.
Then the area will be ab square units.
Now if the length of the rectangle is reduced by 5 units and breadth is increased by 2 units then new length and breadth will be (a−5) units and (b+2) units.
Then new area will be (a−5)(b+2).
Then according to the problem,
(a−5)(b+2)−ab=−80
or, 2a−5b=−70.......(1).
Now if length of the rectangle is increased by 10 units and breadth is decreased by 5 units then new length and breadth will be (a+10) units and (b−5) units.
Then new area will be (a+10)(b−5).
Then according to the problem,
(a+10)(b−5)−ab=50
or, 10b−5a=100
or, 2b−a=20
or, 4b−2a=40......(2).
Now adding (1) and (2) we get
−b=−30
or, b=30.
Putting the value of b in (1) we get, a=40.
Now a+b=40+30=70.
The area of a square is
A = s²
s² = 400
s = √400
s = 20
each side of a square room is 20.
hope this helped, God bless!
Answer: Option 2
Step-by-step explanation:
Let f(y)=x.
![x=2y+3\\\\x-3=2y\\\\y=\frac{1}{2}x-\frac{3}{2}\\\\f^{-1}(x)=\frac{1}{2}x-\frac{3}{2}](https://tex.z-dn.net/?f=x%3D2y%2B3%5C%5C%5C%5Cx-3%3D2y%5C%5C%5C%5Cy%3D%5Cfrac%7B1%7D%7B2%7Dx-%5Cfrac%7B3%7D%7B2%7D%5C%5C%5C%5Cf%5E%7B-1%7D%28x%29%3D%5Cfrac%7B1%7D%7B2%7Dx-%5Cfrac%7B3%7D%7B2%7D)