Answer:
2.29 g of N2
Explanation:
We have to start with the <u>chemical reaction</u>:

The next step is to <u>balance the reaction</u>:

We can continue with the <u>mol calculation</u> using the molar mass of
(65 g/mol), so:

Now, with the<u> molar ratio</u> between
and
we can <u>calculate the moles</u> of
(2:3), so:
With the molar mass of
we can <u>calculate the grams</u>:
I hope it helps!
Adding acid and and catching the solution that drains through.
<span>7.379 * 10^(-4) is measured, hence prone to error, either human error or via measuring device. In this case,
100 cm = 1 m is written in stone and is unquestionable.
The density of the gold is 19.3 g/cm^3 and could be an approximation.
The approximation is good to at least one night.</span>
Answer:
Atomic radius of sodium = 227 pm
Atomic radius of potassium = 280 pm
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
Consider the example of sodium and potassium.
Sodium is present above the potassium with in same group i.e, group one.
The atomic number of sodium is 11 and potassium 19.
So potassium will have larger atomic radius as compared to sodium.
Atomic radius of sodium = 227 pm
Atomic radius of potassium = 280 pm
Answer:
If another scientist give better reasons;if they tested their hypothesis and it was wrong; if someone proved whatever the idea was to be wrong
Explanation:
I mean the list can go on at this point