Option D
When you squeeze an air-filled balloon, what happens inside: There are more collisions of air molecules against the wall of the balloon.
<u>Explanation:</u>
If you compress off the balloon, one seemingly sense the air forcing up on the wall of the balloon with indeed more imposing power. This rise in force is due to a drop in quantity. By squeezing the balloon, you lessen the area the gas bits can hold.
As the particles are driven a little closer collectively, they oppose more, so the force from the moving gas bits rises. Boyle’s Law pronounces that the quantity of a determined quantity of gas limits as its load rises. If the quantity rises, its load reduces.
The correct answer is option D, that is, a storage battery is charged using an electric current.
The transformation of one form of energy into another, generally to transform the energy into more useful kind is known as energy conversion. The energy can neither be created nor be destroyed, it can only be transformed. The different forms of energy comprise light, heat, mechanical, electrical, sound, nuclear, and sound.
In the given question, the charging of a storage battery using electric current is an example of electrical energy being converted into chemical energy.
From the ones that you are showing me <span>the more positive the potential the more likely: </span>
<span>Fe+3 + e- ---> Fe+2
I hope this is something very useful</span>
Answer:
Hypsochromic shift.
The second solvent is more polar.
Explanation:
Compound A + Solvent 1 = red
Compound A + Solvent 2 = orange
Since orange has a smaller wavelength than red, the electronic transition observed when the compound A is dissolved in solvent 2 has a higher energy.
A band transition to a lower wavelength and higher energy is called a hypsochromic shift.
The change in the color due to the solvent is called solvatochromism. Usually, when the hypsochromic shift is observed (negative solvatochromism) it means that the solvent is more polar.