Answer:
10.09 grams
Explanation:
First you need to know the number of moles you are dealing with.
If you know that each mole has 6.022x10²³ of something (in this case of atoms), you can divide 3x10²³ atoms of neons by 6.022x10²³ to obtain the number of moles.
You have 0.5 moles of Neon, so then by the periodic table, you see that the molar mass of neon is 20.18g/mol, so by each mole you have 20.18 grams of neon. Multiply 20.18 grams by 0.5 moles and you got 10.09 grams of Neon
Once the water evaporates, you will start to see the minerals that were present in the water before it changed state. If the water was from the ocean, you will see salt crystals in the evaporated water. If the water was fresh, you may see other minerals typically found in fresh water.
A hypothesis is given to explain a phenomena which has not been
explained till then.
it can be supported by an experiment if that experiment gets the other
results regarding that particular phenomena in agreement with that being
predicted by the hypothesis
Answer:
The amount of space an object occupies.
Explanation:
Answer:
0.718L of 0.81M HCl are required
Explanation:
Based on the reaction:
Cd(s)+2HCI(aq) → H2(g)+CdCl2(aq)
<em>1 mol of Cd reacts with 2 moles of HCl</em>
<em />
To solve this question we must, as first, find the moles of Cd. With the moles of Cd we can find the moles of HCl needed to react completely with the Cd. With the moles and the molarity we can find the volume:
<em>Moles Cd -Molar mass: 112.411g/mol-:</em>
32.71g * (1mol / 112.411g) = 0.2910 moles Cd
<em>Moles HCl:</em>
0.2910 moles Cd * (2 moles HCl / 1mol Cd) =
0.5820 moles HCl
<em>Volume:</em>
0.5820 moles HCl * (1L / 0.81moles) =
<h3>0.718L of 0.81M HCl are required</h3>