It's just asking you to sit down and COUNT the little squares in each sector.
It'll help you keep everything straight if you take a very sharp pencil and make a tiny dot in each square as you count it. That way, you'll be able to see which ones you haven't counted yet, and also you won't count a square twice when you see that it already has a dot in it.
(If, by some chance, this is a picture of the orbit of a planet revolving around the sun ... as I think it might be ... then you should find that both sectors jhave the same number of squares.)
Answer:
a= 3.49 m/s^2
Explanation:
magnitude of total acceleration = sqrt{radial acceleration^2+tangential acceleration^2}.
we know that tangential acceleration a_t= change in velocity /time taken
now 90 km/h = 25 m/s
a_t = 25/17 = 1.47 m/s^2.
radial acceleration a_r = v^2/r
v= a_t×t = 1.47×13 = 19.11 m/s
a_r = 19.11^2/115= 3.175
now,


a= 3.49 m/s^2
Displacement = (straight-line distance between the start point and end point) .
Since the road east is perpendicular to the road north,
the car drove two legs of a right triangle, and the magnitude
of its final displacement is the hypotenuse of the triangle.
Length of the hypotenuse = √ (215² + 45²)
= √ (46,225 + 2,025)
= √ 48,250
= 219.7 miles .
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>
<span>d. electron
J J Thomson discovered the electron, and it was put in his model of the atom.</span>