The correct answer is Light years
<u>Gay Lussac’s law</u> state that the pressure and absolute temperature of a fixed quantity of a gas are directly proportional under constant volume conditions.
<h2>Further Explanation
</h2><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Boyles’s law
</h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
<h3>Charles’s law
</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Gay-Lussac’s law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:
</h3>
- Gay-Lussac’s law: brainly.com/question/2644981
- Charles’s law: brainly.com/question/5016068
- Boyles’s law: brainly.com/question/5016068
- Dalton’s law: brainly.com/question/6491675
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Gay-Lussac’s law
Answer:
The gauge pressure in Pascals inside a honey droplet is 416 Pa
Explanation:
Given;
diameter of the honey droplet, D = 0.1 cm
radius of the honey droplet, R = 0.05 cm = 0.0005 m
surface tension of honey, γ = 0.052 N/m
Apply Laplace's law for a spherical membrane with two surfaces
Gauge pressure = P₁ - P₀ = 2 (2γ / r)
Where;
P₀ is the atmospheric pressure
Gauge pressure = 4γ / r
Gauge pressure = 4 (0.052) / (0.0005)
Gauge pressure = 416 Pa
Therefore, the gauge pressure in Pascals inside a honey droplet is 416 Pa
Answer:
-15 m/s
Explanation:
The computation of the velocity of the 4.0 kg fragment is shown below:
For this question, we use the correlation of the momentum along with horizontal x axis
Given that
Weight of stationary shell = 6 kg
Other two fragments each = 1.0 kg
Angle = 60
Speed = 60 m/s
Based on the above information, the velocity = v is



= -15 m/s
The three different motions are;
- The upward motion of the woman is constant
- The downward motion of the woman is also constant
- The horizontal motion of the woman is zero.
<h3>
What is force diagram?</h3>
Force diagram is a pictorial or graphical illustration of different forces acting on object.
In this given question, there two forces acting on the woman as depicted in the force diagram.
- The first force is surface force (Fs)
- The second force is force of Earth (FE)
In the given force diagram, the woman is in equilibrium, this implies that the surface force and the Earth force are equal.
The three different types of motion of the woman that are consistent with the force diagram include the following;
- The upward motion of the woman is constant
- The downward motion of the woman is also constant
- The horizontal motion of the woman is zero since there is no horizontal force on the woman.
Learn more about force diagram here: brainly.com/question/3624253
#SPJ1