Answer:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
Explanation:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
This is because:
If we consider the ball initially at rest on a frictionless surface and a force is exerted through the centre of mass of the ball, it will slide across the surface with no rotation, and thus, there will only be translational motion.
Now, if there is friction and force is again applied to the stationary ball, the frictional force will act in the opposite direction to the force but at the edge of the ball that rests on the ground. This friction generates a torque on the ball which starts the rotation.
Therefore, static friction is infact necessary for a ball to begin rolling.
Now, from the top of the ball, it will move at a speed 2v, while the centre of mass of the ball will move at a speed v and lastly, the bottom edge of the ball will instantaneously be at rest. So as the edge touching the ground is stationary, it experiences no friction.
So friction is necessary for a ball to start rolling but once the rolling condition has been met the ball experiences no friction.
Answer:
The three different examples of the accelerated motion are Falling/dropping of ball, Standing in circular rotating space, moving around the circle.
Explanation:
Acceleration is the change in velocity, which is related to the speed and direction in which the object is travelling. Hence, speeding up, slowing down and turning are few types . A simple example would be dropping a ball: as it falls its speed increases, which is a type of acceleration. A more complicated example would be standing in a circular, rotating space station. A point on the station moves in a circle, meaning that as it travels it must be turning (to remain in circular motion) making this another example of acceleration
Answer:
As of right now the techology has not been invented to time travel
if we were to time travel to the future from where that person travled from would be the past and to them the people from where they came from are living in the past
Explanation:
Answer:
a) 2.063*10^-4
b) 1.75*10^-4
Explanation:
Given that: d= 1.628 mm = 1.628 x 10-3 I= 12 mA = 12.0 x 10-8 A The Cross-sectional area of the wire is:

a) <em>The Potential difference across a 2.00 in length of a 14-gauge copper </em>
<em> wire: </em>
L= 2.00 m
From Table Copper Resistivity
= 1.72 x 10-8 S1 • m The Resistance of the Copper wire is:

=0.0165Ω
The Potential difference across the copper wire is:
V=IR
=2.063*10^-4
b) The Potential difference if the wire were made of Silver: From Table: Silver Resistivity p= 1.47 x 10-8 S1 • m
The Resistance of the Silver wire is:

=0.014Ω
The Potential difference across the Silver wire is:
V=IR
=1.75*10^-4