Answer:
1.645 moles of excess reactant that is of magnesium metal are left over.
Explanation:
Moles of magnesium metal = 3.29 mol
Moles of HCl = 3.29 mol

According to recation, 2 moles of HCl reacts with 1 mol of magnesium metal, then 3.29 moles of HCl will react with :
of magnesium metal
Moles of HCl left = 3.29mol - 3.29 mol = 0
Moles of magnesium metal left = 3.29 mol - 1.645 mol = 1.645 mol
1.645 moles of excess reactant that is of magnesium metal are left over.
Answer: when you look at the meat, and it looks beautiful like a crispy donut made by Gordan Ramsay
Explanation:
Hells Kitchen is kewl
<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
26
protons equal identity
Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g