The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
The minimum thickness = 83.92 nm
Explanation:
The relation between the wavelength in a particular medium and refractive index 
where ;
= wavelength of the light in vacuum
n = refractive index of medium with respect to vacuum
For one phase change :

Replacing 1.43 for n and 480 nm for λ; we have:

t = 83.92 nm
Thus; the minimum thickness = 83.92 nm
Answer:
45000 kg and 45 tons
Explanation:
The expression in kilograms and tons is shown below;
As we know that
1 gr is 0.001 kg
So, 45000000 = 45,000 kg
And,
1 kg = 0.001 tons
So, 45000 kg = 45 tons
Therefore the same would be considered
Answer:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.[1] More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.[2] The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
His. Curbs I b h bs. H b u b