Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
The absence of external force in the outer space, allows the piece of rock to continue moving at the same velocity for thousands of years.
<h3>Absence of external force on the outer space</h3>
The outer space is almost an absolute vacuum, because it's nearly empty. There is no matter such as air in the outer space that will provide an external force needed to change the velocity of the piece of rock.
From Newton's first law of motion, an object in a state of rest or uniform motion in a straight line, will continue in that state unless it is acted upon by an external force.
Thus, the absence of external force in the outer space, allows the piece of rock to continue moving at the same velocity for thousands of years.
Learn more about outer space here: brainly.com/question/24701339
Answer:
I would say a pond
Explanation:
A pond is more still than an ocean, therefore you could see your reflection better