Answer:
τ = 132.773 lb/in² = 132.773 psi
Explanation:
b = 12 in
F = 60 lb
D = 3.90 in (outer diameter) ⇒ R = D/2 = 3.90 in/2 = 1.95 in
d = 3.65 in (inner diameter) ⇒ r = d/2 = 3.65 in/2 = 1.825 in
We can see the pic shown in order to understand the question.
Then we get
Mt = b*F*Sin 30°
⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in
Now we find ωt as follows
ωt = π*(R⁴ - r⁴)/(2R)
⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)
⇒ ωt = 2.7114 in³
then the principal stresses in the pipe at point A is
τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)
⇒ τ = 132.773 lb/in² = 132.773 psi
6 is the answer I remember the answer from when I took this and it was easy
My guess would be about 10 years because stars are hot balls of light that are reflections from years ago so it would most likely take awhile
..........................................................