Answer:
(A) Q = 321.1C (B) I = 42.8A
Explanation:
(a)Given I = 55A−(0.65A/s2)t²
I = dQ/dt
dQ = I×dt
To get an expression for Q we integrate with respect to t.
So Q = ∫I×dt =∫[55−(0.65)t²]dt
Q = [55t – 0.65/3×t³]
Q between t=0 and t= 7.5s
Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]
Q = 321.1C
(b) For a constant current I in the same time interval
I = Q/t = 321.1/7.5 = 42.8A.
Tides are influenced by the force of gravity exerted by the earth, moon and the sun. The sun has a larger mass than the moon and as such has a greater gravitational pull on the earth. the moon however has greater influence over the tides because they are caused by the difference in gravity fields. This means that the moon is the dominant influence due to the fact that the fractional difference in its force across the earth is greater than that seen from the sun.
Answer:
screw and pulley
Explanation:
because they didn't have any of the other tools in that time
Answer:
The answer is A, B, C and D
Explanation:
(is that how it works?)
Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m