1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
6

2.What is forensic paleontology? 4.What are Forensic wood anatomists?

Physics
1 answer:
lutik1710 [3]3 years ago
6 0

Forensic paleontology are tools used to help identify and investigate intelligent cases of criminal activity.

Forensic Wood Anatomists are people who are able to come to conclusions of clues of both macro and microscopic  levels using forensic paleontology.

You might be interested in
A very long string (linear density 0.7 kg/m ) is stretched with a tension of 70 N . One end of the string oscillates up and down
rewona [7]

To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

V = \sqrt{\frac{T}{\rho}}

Where,

T = Tension

\rho = Linear density

Our data are given by

Tension , T = 70 N

Linear density , \rho = 0.7 kg/m

Amplitude , A = 7 cm = 0.07 m

Period , t = 0.35 s

Replacing our values,

V = \sqrt{\frac{T}{\rho}}

V = \sqrt{\frac{70}{0.7}

V = 10m/s

Speed can also be expressed as

V = \lambda f

Re-arrange to find \lambda

\lambda = \frac{V}{f}

Where,

f = Frequency,

Which is also described in function of the Period as,

f = \frac{1}{T}

f = \frac{1}{0.35}

f = 2.86 Hz

Therefore replacing to find \lambda

\lambda = \frac{10}{2.86}

\lambda = 3.49m

Therefore the wavelength of the waves created in the string is 3.49m

3 0
3 years ago
Calculate the magnitude of the acceleration due to gravity on the surface of Earth due to the Moon.
Fudgin [204]

Answer:

g'_h=1.096\times 10^{-5}\ m.s^{-2}

Explanation:

We know that the gravity on the surface of the moon is,

  • g'=\frac{g}{6}
  • g'=1.63\ m.s^{-2}

<u>Gravity at a height h above the surface of the moon will be given as:</u>

g'_h=\frac{G.m}{(r+h)^2} ..........................(1)

where:

G = universal gravitational constant

m = mass of the moon

r = radius of moon

We have:

  • G=6.67\times 10^{-11}\ m^3.s^{-2}.kg^{-1}
  • m=7.35\times 10^{22}\ kg
  • r=1.74\times 10^6\ m
  • h=384.4\times 10^6\ m is the distance between the surface of the earth and the moon.

Now put the respective values in eq. (1)

g'_h=\frac{6.67\times 10^{-11}\times 7.35\times 10^{22}}{(1.74\times 10^6+384.4\times 10^6)^2}

g'_h=1.096\times 10^{-5}\ m.s^{-2} is the gravity on the moon the earth-surface.

4 0
3 years ago
Insulators will:
nalin [4]

Answer:

Inhibit the flow of electrons  

Explanation:

An electric current usually consists of electrons moving through a wire.

An insulator prevents the flow of an electric current, so it inhibits the flow of electrons.

7 0
3 years ago
Read 2 more answers
In the model of the hydrogen atom due to Niels Bohr, the electron moves around the proton at a speed of 3.3 × 106 m/s in a circl
irga5000 [103]

Answer:

1.5048\times 10^{-23}\ Am^2

Explanation:

q = Charge of proton = 1.6\times 10^{-19}\ C

r = Radius of circle = 5.7\times 10^{-11}\ m

v = Velocity of proton = 3.3\times 10^6\ m/s

Magnetic moment is given by

M=\frac{1}{2}qrv\\\Rightarrow M=\frac{1}{2}1.6\times 10^{-19}\times 5.7\times 10^{-11}\times 3.3\times 10^6\\\Rightarrow M=1.5048\times 10^{-23}\ Am^2

The magnetic moment associated with this motion is 1.5048\times 10^{-23}\ Am^2

5 0
3 years ago
The rocket is fired vertically and tracked by the radar station shown. When θ reaches 66°, other corresponding measurements give
Flauer [41]

Answer:

velocity = 1527.52 ft/s

Acceleration = 80.13 ft/s²

Explanation:

We are given;

Radius of rotation; r = 32,700 ft

Radial acceleration; a_r = r¨ = 85 ft/s²

Angular velocity; ω = θ˙˙ = 0.019 rad/s

Also, angle θ reaches 66°

So, velocity of the rocket for the given position will be;

v = rθ˙˙/cos θ

so, v = 32700 × 0.019/ cos 66

v = 1527.52 ft/s

Acceleration is given by the formula ;

a = a_r/sinθ

For the given position,

a_r = r¨ - r(θ˙˙)²

Thus,

a = (r¨ - r(θ˙˙)²)/sinθ

Plugging in the relevant values, we obtain;

a = (85 - 32700(0.019)²)/sin66

a = (85 - 11.8047)/0.9135

a = 80.13 ft/s²

4 0
3 years ago
Other questions:
  • A single slit forms a diffraction pattern, with the first minimum at an angle of 40.0° from central maximum, when monochromatic
    8·1 answer
  • Technician A says that power is the rate that energy is stored. Technician B says that power refers to the rate that energy is t
    8·1 answer
  • Scientists are investigating how well different microphones capture and record sounds. They use tools that show how loud the hig
    5·1 answer
  • In a population of seals, most of the seals have similar coloring. However, one seal has albinism. This seal is white and is alm
    13·2 answers
  • Force exerted by a person or object is called
    9·1 answer
  • Which is a group pragram acoholics recover in
    5·1 answer
  • Pls help asap
    13·2 answers
  • A force that tries to slow things down when two things are rubbed together ​
    9·2 answers
  • In the oxygen cycle, oxygen is
    10·1 answer
  • Name two types of mechanical weathering in NewBedford
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!