Brushes, battery terminals, commutator, armature, magnets
V=ir
I=10
v=120
r=?
r=v/i
r=120/10
r=12 ohm
Answer: 6m/s
Explanation:
Using the law of conservation of momentum, the change in momentum of the bodies before collision is equal to the change in momentum after collision.
After collision, the two objects will move at the same velocity (v).
Let mA and mB be the mass of the two objects
uA and uB be their velocities before collision.
v be their velocity after collision
Since the two objects has the same mass, mA= mB= m
Also since object A is at rest, its velocity = 0m/s
Velocity of object B = 12m/s
Mathematically,
mAuA + mBuB = (mA+mB )v
m(0) + m(12) = (m+m)v
0+12m = (2m)v
12m = 2mv
12 = 2v
v = 6m/s
Therefore the speed of the composite body (A B) after the collision is 6m/s
Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation: