Answer:
Answer explained below
Explanation:
(a) The rays are diverging near the lens. They change the direction when they passed through the converging lens
(b) If the light rays don't bend they will move away from the optical (principal axis) as the other waves are moving.
(c) If we decrease the distance between lens and light source, most of the rays diverge and no ray converges on the screen even after passing through the lens. Here is a screenshot.
The formula we can use in this case is:
v = v0 + a t
where v is final velocity, v0 is initial velocity, a is
acceleration and t is time
So finding for v0:
v0 = v – a t
v0 = 43.7 – (2.5) 2.7
v0 = 36.95 m/s
The stage where atoms are spread out and bouncy is the gas stage.
<span>D. Convection occurs when heated particles of a material flow toward areas having less thermal energy. This movement of particles can only occur in gases and liquids, not solids.</span>
Answer:
14.43° or 0.25184 rad
Explanation:
v = Speed of sound in air = 343 m/s
f = Frequency = 1240 Hz
d = Width in doorway = 1.11 m
Wavelength is given by

In the case of Fraunhofer diffraction we have the relation

The minimum angle relative to the center line perpendicular to the doorway will someone outside the room hear no sound is 14.43° or 0.25184 rad