Answer:
Increasing Surface Area
Explanation:
A greater surface area (meaning more, smaller particles) allows for more opportunity for particles to collide. On the other hand, decreasing temperature and removing a catalyst would only decrease the number of collisions, and the clumping option doesn't make much sense. Hope this helps!
Answer:
P=atm

Explanation:
The problem give you the Van Der Waals equation:

First we are going to solve for P:


Then you should know all the units of each term of the equation, that is:







where atm=atmosphere, L=litters, K=kelvin
Now, you should replace the units in the equation for each value:

Then you should multiply and eliminate the same units which they are dividing each other (Please see the photo below), so you have:

Then operate the fraction subtraction:
P=

And finally you can find the answer:
P=atm
Now solving for b:




Replacing units:

Multiplying and dividing units,(please see the second photo below), we have:



False
Explanation:
Electron affinity is negative when energy is absorbed and it is positive when energy is released.
Electron affinity is defined as the energy released in adding an electron to a neutral atom in the gas phase.
It is a measure of the readiness of an atom to gain an electron.
In a reaction where energy is released, electron affinity is usually positive. These reactions are called exothermic reactions.
Endothermic reactions in which energy is absorbed have negative electron affinity values.
Learn more:
Endothermic reactions brainly.com/question/12964401
#learnwithBrainly
Answer: Mass of
produced in this reaction was 6.56 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Mass or reactants = Mass of
+ mass of
= 16.00 + 64.80 = 80.80 g
Mass of products = mass of aqueous solution + mass of
+ = 74.24 + x g
Mass or reactants = Mass of products
80.80 g = 74.24 + x g
x = 6.56 g
Thus mass of
produced in this reaction was 6.56 grams
John Dalton was a scientist who proposed that all matter consists of atoms. At this stage, no one had yet discovered neutrons and the nucleus. As a result, Dalton's model consisted of a single atom i.e. the atom was the smallest object.
A mass spectrometer is an instrument that is able to see what is inside an atom. Scientists have been able to prove that the item is not the smallest object in the world. Atoms are made up of smaller objects called protons, neutrons and electrons.
We can, therefore, safely conclude that data from mass spectrometry has helped modern scientists to make modifications to Dalton's model. <span>
</span>