Answer:
Charge on each metal sphere will be 
Explanation:
We have given number of electron added to metal sphere A 
As both the spheres are connected by rod so half -half electron will be distributed on both the spheres.
So electron on both the spheres 
We know that charge on each electron 
So charge on both the spheres will be equal to 
So charge on each metal sphere will be equal to 
The answer is 107 degrees. The geometric shape for ammonia is Trigonal Pyramidal, even though its electron geometry is “Tetrahedral”. This is because ammonia has a lone pair of electrons that occupy its space like the other 3 hydrogens in the geometric structure.
The answer 180 degrees. This is because of the linear geometric structure of carbon dioxide. The oxygen atom is on either side of the carbon atom, each is bound by a double covalent bond. All the atoms are involved in the bond and there are no one pair electrons.
The answer is tetrahedral geometry. This is because all the 4 valence electrons of the carbon are involved in a bond with a hydrogen atom. The angles in a tetrahedral geometric arrangement, such as in methane, is 109.5 degrees, where the hydrogen atoms are as far apart, from each other, as possible .
The letter that answers this question correctly is E .
Answer:
Al's mass is 102.92 kg
Explanation:
As there are no external forces in the horizontal direction, the horizontal net force must be zero:
As the force is the derivative in time of the momentum, this means that the horizontal momentum is constant:

where the suffix i and f means initial and final respectively.
The initial momentum will be:

But, as they are at rest, initially


So, this means:

We know that the have an combined mass of 195 kg:
.
so:
.





Now, we can use the values:


where the minus sign appears as they are moving at opposite directions


and this is the Al's mass.
Denser materials tend to be closer to earths center due to their mass gravity is shown by the equation mg
Which stands for mass x gravity.