Answer:
350 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of Go Kart = 35 kg
Initial velocity (u) = 12 m/s
Distance (s) = 7.2 m
Force (F) =?
Next, we shall determine the acceleration of the Go Kart. This can be obtained as follow:
Initial velocity (u) = 12 m/s
Distance (s) = 7.2 m
Final velocity (v) = 0 m/s
Acceleration (a) =.?
v² = u² + 2as
0² = 12² + (2 × a × 7.2)
0 = 144 + 14.4a
Collect like terms
0 – 144 = 14.4a
– 144 = 14.4a
Divide both side by 14.4
a = – 144 / 14.4
a = – 10 m/s²
The negative sign indicate that the Go Kart is decelerating when the brake was applied.
Finally, we shall determine the force the Go Kart have when the student locked the brake. This can be obtained as follow:
Mass (m) of Go Kart = 35 kg
Acceleration (a) = 10 m/s
Force (F) =?
F = ma
F = 35 × 10
F = 350 N
Thus, the Go Kart has a force of 350 N when the student locked the brake.
60 Miles per hour 60 times 2 is 120
Explanation:
Given that,
Radius of the coil, r = 4.2 cm
Number of turns in the coil, N = 500
The magnetic field as a function of time is given by :

Resistance of the coil, R = 640 ohms
We need to find the magnitude of induced emf in the coil as a function of time. It is given by :

Hence, this is the required solution.
Answer:
The runner's acceleration as she sped up to the finish line is 0.95m/s²
Explanation:
Acceleration is the change in velocity of a body with respect to time. It is expressed as;
Acceleration = change in velocity/time
Change in velocity = final velocity - initial velocity
Acceleration = final velocity - initial velocity / time
Given initial speed = 8.0m/s
Final speed = 9.9m/s
Time taken = 2.0s
Acceleration = 9.9-8.0 / 2.0
Acceleration = 1.9/2
Acceleration = 0.95m/s²