Answer:
A. by lowering the activation energy
Explanation:
- Adding a catalyst has this effect on activation energy. A catalyst provides an alternative route for the reaction with a lower activation energy. <em>As illustrated in the attached image.</em>
- This means that more particles have the activation energy required for the reaction to take place (compared to without the catalyst) and so the speed of the reaction increases.
Answer:
Q = 3,534.4 lbm/s = 212,062 lbm/min
Explanation:
Mass flowrate of discharge or leakage mass flowrate (Q) is given as
Q = AC₀√(2ρgP)
A = Cross sectional Area of leakage = (πD²/4) = (π×0.7²)/4
A = 0.385 ft²
C₀ = discharge coefficient = 0.98 (For maximum discharge flow rate, the flow is turbulent with discharge coefficient within 1% of 0.98)
ρ = density of butane at 76°F = 35.771 lbm/ft³
g = acceleration due to gravity = 32.2 lbm.ft/lbf.s²
P = Gauge Pressure in the tank = (absolute pressure) - (external pressure) = 19 - 1 = 18 atm = 38091.9 lbf/ft²
Q = AC₀√(2ρgP)
Q = (0.385)(0.98)√(2×35.771×32.2×38091.9)
Q = 3,534.4 lbm/s = 212,062 lbm/min
Hope this Helps!!!
The most important reaction involved in the reoxidation of NADH is Pyruvate → lactate
Two ATP were generated as a net result of glycolysis, two NAD+ were converted to two NADH + H+, and two glucose molecules were divided into two pyruvate molecules.
Pyruvate will go through a process called fermentation when oxygen is absent.
The NADH + H+ from glycolysis will be recycled back to NAD+ during fermentation, allowing glycolysis to proceed.
NAD+ is converted during the glycolysis process into NADH + H+.
Glycolysis cannot proceed without the presence of NAD+.
The NADH produced during glycolysis will be oxidised to create new NAD+ during aerobic respiration, when it will be used once more in glycolysis.
Pyruvate will undergo oxidation in the absence of oxygen or if an organism is unable to engage in aerobic respiration.
Hence The most important reaction involved in the reoxidation of NADH is Pyruvate → lactate
Learn more about Reoxidation here
brainly.com/question/14853085
#SPJ4
Answer:
Physical properties: Sodium chloride is a white crystalline solid with a density of 2.16 g/mL, and a melting point of 801 °C. It is also available as aqueous solutions of different concentrations, called saline solutions. Chemical properties: Sodium chloride is readily soluble in water and other polar solvents.
Explanation:
<em>Hope </em><em>it </em><em>helps </em><em>ya </em><em>ItzAlex</em>
1- physical
2-chemical
3-Physical
4-Chemical
5-I’m not sure
I haven’t done this in a while so these may be wrong sorry