Answer:
Different materials have different densities. So it is False
The answer is the bohr model was molded after the solar system
C.Dissolve because its another word for soluble
Answer:
[ Ga ] = 1.163 E-8 Kg/m³
Explanation:
- %wt = [(mass Ga)/(mass Si)]*100 = 5.0 E-7 %
⇒ 5.0 E-9 = m Ga/m Si
assuming: m Si = 100 g = 0.1 Kg
⇒ m Ga = (5.0 E-9)*(0.1 Kg) = 5 E-10 Kg
∴ density (δ) Si = 2.33 Kg/m³
⇒ Volume Si = (0.1 Kg)*(m³/2.33 Kg) = 0.043 m³
⇒ [ Ga ] = (5 E-10 Kg)/(0.043 m³) = 1.163 E-8 Kg/m³
⇒ [ Ga ] =
It is important to note that mass and mole pertain to different units of measurement, thus, 1 mole of one substance may have a lower or higher mass compared to a different substance. The mass of an object gives a measure of the number of atoms present in the substance while the number of moles of a substance refers to the amount of a chemical substance it has and is often used for chemical reactions.
For this problem, we first get the molar mass of each substance:
Molar mass of H2O = 18.0153 g/mol
Molar mass of C6H12O6 = 180.1559 g/mol
We then convert each substance into units of mass (grams), where:
1 mol H20 x 18.0153 g/mol = 18.0153 g H20
1 mol C6H12O6 x 180.1559 g/mol = 180.1559 g C6H12O6
It was then determined that 1 mole of glucose has more mass than 1 mole of water.