1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
12

What is the amount of sales tax owned on a $6 book if the tax rate is 5%?

Mathematics
1 answer:
hodyreva [135]3 years ago
5 0
6/100 = 0.06
0.06 x 5 = 0.3
$0.30
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Can someone help me
sergij07 [2.7K]

Answer:

1)  (c)∠ G = 34°

2) (a)  x = 33°

3) (d) The perpendicular segments are  JM, KL, PQ AND NR.

Step-by-step explanation:

Here in the given questions:

1)  p II r

⇒ ∠ G  = 34°  (ALTERNATE EXTERIOR ANGLES)

Hence, the measure of  ∠ G = 34°

2) In the given triangle:

The measure of exterior angle is always the sum of interior opposite angles.

⇒ Here, x + 72°  = 105°

or, x = 105° - 72° =   33°   , or x = 33°

3) The given plane in the cube is JKPN

The segments which have J , K , P and N as their one vertex are perpendicular to the given plane.

Hence, the segments are  JM, KL, PQ AND NR.

7 0
4 years ago
Farmer bob has a lot of chickens and pigs. If the pigs and chickens had the total of 17 heads and 46 legs, how much of each anim
valkas [14]
11 chicken and 6 pigs is the answer

2 x 11 + 4 x 6 = 46 legs

11 + 6 = 17 heads
4 0
3 years ago
Does anyone know how to factor y^2+49?
Delvig [45]

Answer:

(y + 7i)(y - 7i)

Step-by-step explanation:

It cannot be factored using real numbers, but consider

7i × - 7i

= -49i² and i² = - 1

= 49

The factoring as a difference of squares to obtain

y² + 49 = (y + 7i)(y - 7i)

5 0
3 years ago
Read 2 more answers
Here’s a graph of a linear function. Write the equation that describes that function. (Zoom in if blurry)
Maru [420]

Answer: y = x/2 + 3

Step-by-step explanation:

The equation of a straight line can be represented in the slope-intercept form, y = mx + c

Where c = intercept

Slope, m = change in value of y on the vertical axis / change in value of x on the horizontal axis

change in the value of y = y2 - y1

Change in value of x = x2 -x1

y2 = final value of y

y 1 = initial value of y

x2 = final value of x

x1 = initial value of x

Looking at the graph,

y2 = 6

y1 = 4

x2 = 6

x1 = 2

Slope,m = (6 - 4)/(6 - 2) = 2/4 = 1/2

To determine the intercept, we would substitute x = 2, y = 4 and m= 1/2 into y = mx + c. It becomes

4 = 1/2 × 2 + c

4 = 1 + c

c = 4 - 1

c = 3

The equation becomes

y = x/2 + 3

5 0
3 years ago
Other questions:
  • Write the equation of the line through the points (2,4)(-3,-1). write answer in a point slope form
    11·1 answer
  • Suppose you need to know an equation of the tangent plane to a surface S at the point P(4, 1, 4). You don't have an equation for
    5·1 answer
  • To determine whether voters would be willing to vote for a tax increase to improve the city's parks, the park commission surveys
    13·1 answer
  • 18= 5m + 3 .. what would b m?
    11·2 answers
  • A telephone pole is 20 feet tall. If the shadow of the telephone pole is 65 and
    15·1 answer
  • I don't understand this question... pls help due tonight
    7·1 answer
  • I feel like I know but pls help
    10·2 answers
  • The growing interest in and use of the Internet have forced many companies into considering ways to sell their products on the W
    10·1 answer
  • here a subtraction problem that has been solved correctly for 68-59=9 but the choices is 9+68=77 68+9=77 9+59=68 which one is th
    7·1 answer
  • What is the tangent<br> ratio of angle C₂ ?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!