Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
Answer:
42244138.951 m
Explanation:
G = Gravitational constant = 6.667 × 10⁻¹¹ m³/kgs²
r = Radius of orbit from center of earth
M = Mass of Earth = 5.98 × 10²⁴ kg
m = Mass of Satellite
The satellite revolves around the Earth at a constant speed
Speed = Distance / Time
The distance is the perimeter of the orbit

The Centripetal force of the satellite is balanced by the universal gravitational force

The radius as measured from the center of the Earth) of the orbit of a geosynchronous satellite that circles the earth is 42244138.951 m
The angular momentum of an object is equal to the product of its moment of inertia and angular velocity.
L = Iω
I = 1/2 MR²
I = 1/2 x 13 x (0.2)
I = 1.3
ω = 2π/t
ω = 2π/0.3
ω = 20.9
L = 1.3 x 20.9
= 27.2 kgm²/s
Answer:
The width of the central bright fringe on the screen is observed to be unchanged is 
Explanation:
To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes. Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

Where,
w = width
wavelength
m is an integer, m = 1, 2, 3...
We here know that as
as w are constant, then

We need to find
, then

Replacing with our values:


Therefore the width of the central bright fringe on the screen is observed to be unchanged is 
Answer:
32.3 m/s
Explanation:
The ball follows a projectile motion, where:
- The horizontal motion is a uniform motion at costant speed
- The vertical motion is a free fall motion (constant acceleration)
We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of

and it covers a distance of
d = 165 m
So, the total time of flight of the ball is

In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.
The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:

where
is the vertical velocity at time t
is the initial vertical velocity
is the acceleration of gravity (taking downward as positive direction)
Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball: