Answer:
2.104 L fuel
Explanation:
Given that:
Volume of water = 35 L = 35 × 10³ mL
initial temperature of water = 25.0 ° C
The amount of heat needed to boil water at this temperature can be calculated by using the formula:
![q_{boiling} = mc \Delta T](https://tex.z-dn.net/?f=q_%7Bboiling%7D%20%3D%20mc%20%5CDelta%20T)
where
specific heat of water c= 4.18 J/g° C
![q_{boiling} = 35 \times 10^{3} \times \dfrac{1.00 \ g}{1 \ mL} \times 4.18 \ J/g^0 C \times (100 - 25)^0 C](https://tex.z-dn.net/?f=q_%7Bboiling%7D%20%3D%2035%20%5Ctimes%2010%5E%7B3%7D%20%5Ctimes%20%5Cdfrac%7B1.00%20%5C%20g%7D%7B1%20%5C%20mL%7D%20%5Ctimes%204.18%20%20%5C%20J%2Fg%5E0%20C%20%5Ctimes%20%28100%20-%2025%29%5E0%20C)
![q_{boiling} = 10.9725 \times 10^6 \ J](https://tex.z-dn.net/?f=q_%7Bboiling%7D%20%3D%2010.9725%20%5Ctimes%2010%5E6%20%5C%20J)
Also; Assume that the fuel has an average formula of C7 H16 and 15% of the heat generated from combustion goes to heat the water;
thus the heat of combustion can be determined via the expression
![q_{combustion} =- \dfrac{q_{boiling}}{0.15}](https://tex.z-dn.net/?f=q_%7Bcombustion%7D%20%3D-%20%20%5Cdfrac%7Bq_%7Bboiling%7D%7D%7B0.15%7D)
![q_{combustion} =- \dfrac{10.9725 \times 10^6 J}{0.15}](https://tex.z-dn.net/?f=q_%7Bcombustion%7D%20%3D-%20%20%5Cdfrac%7B10.9725%20%5Ctimes%2010%5E6%20J%7D%7B0.15%7D)
![q_{combustion} = -7.315 \times 10^{7} \ J](https://tex.z-dn.net/?f=q_%7Bcombustion%7D%20%3D%20-7.315%20%5Ctimes%2010%5E%7B7%7D%20%5C%20J)
![q_{combustion} = -7.315 \times 10^{4} \ kJ](https://tex.z-dn.net/?f=q_%7Bcombustion%7D%20%3D%20-7.315%20%5Ctimes%2010%5E%7B4%7D%20%5C%20kJ)
For heptane; the equation for its combustion reaction can be written as:
![C_7H_{16} + 11O_{2(g)} -----> 7CO_{2(g)}+ 8H_2O_{(g)}](https://tex.z-dn.net/?f=C_7H_%7B16%7D%20%2B%2011O_%7B2%28g%29%7D%20-----%3E%207CO_%7B2%28g%29%7D%2B%208H_2O_%7B%28g%29%7D)
The standard enthalpies of the products and the reactants are:
![\Delta H _f \ CO_{2(g)} = -393.5 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%20_f%20%20%20%5C%20CO_%7B2%28g%29%7D%20%3D%20-393.5%20kJ%2Fmol)
![\Delta H _f \ H_2O_{(g)} = -242 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%20_f%20%20%20%5C%20H_2O_%7B%28g%29%7D%20%3D%20-242%20kJ%2Fmol)
![\Delta H _f \ C_7H_{16 }_{(g)} = -224.4 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%20_f%20%20%20%5C%20C_7H_%7B16%20%7D_%7B%28g%29%7D%20%3D%20-224.4%20kJ%2Fmol)
![\Delta H _f \ O_{2{(g)}} = 0 kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H%20_f%20%20%20%5C%20O_%7B2%7B%28g%29%7D%7D%20%3D%200%20kJ%2Fmol)
Therefore; the standard enthalpy for this combustion reaction is:
![\Delta H ^0= \sum n_p\Delta H^0_{f(products)}- \sum n_r\Delta H^0_{f(reactants)}](https://tex.z-dn.net/?f=%5CDelta%20H%20%5E0%3D%20%5Csum%20n_p%5CDelta%20H%5E0_%7Bf%28products%29%7D-%20%5Csum%20n_r%5CDelta%20H%5E0_%7Bf%28reactants%29%7D)
![\Delta H^0 =( 7 \ mol ( -393.5 \ kJ/mol) + 8 \ mol (-242 \ kJ/mol) -1 \ mol( -224.4 \ kJ/mol) - 11 \ mol (0 \ kJ/mol))](https://tex.z-dn.net/?f=%5CDelta%20H%5E0%20%3D%28%207%20%20%5C%20mol%20%28%20-393.5%20%5C%20kJ%2Fmol%29%20%20%2B%208%20%5C%20mol%20%28-242%20%5C%20kJ%2Fmol%29%20-1%20%5C%20mol%28%20-224.4%20%5C%20kJ%2Fmol%29%20-%2011%20%20%5C%20mol%20%20%280%20%5C%20kJ%2Fmol%29%29)
![\Delta H^0 = (-2754.5 \ \ kJ - 1936 \ \ kJ+224.4 \ \ kJ+0 \ \ kJ)](https://tex.z-dn.net/?f=%5CDelta%20H%5E0%20%3D%20%28-2754.5%20%5C%20%5C%20%20kJ%20-%20%201936%20%5C%20%5C%20%20kJ%2B224.4%20%5C%20%20%5C%20kJ%2B0%20%5C%20%5C%20%20kJ%29)
![\Delta H^0 = -4466.1 \ kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5E0%20%3D%20-4466.1%20%5C%20kJ)
This simply implies that the amount of heat released from 1 mol of C7H16 = 4466.1 kJ
However the number of moles of fuel required to burn
heat released is:
![n_{fuel} = \dfrac{q}{\Delta \ H^0}](https://tex.z-dn.net/?f=n_%7Bfuel%7D%20%3D%20%5Cdfrac%7Bq%7D%7B%5CDelta%20%5C%20H%5E0%7D)
![n_{fuel} = \dfrac{-7.315 \times 10^{4} \ kJ}{-4466.1 \ kJ}](https://tex.z-dn.net/?f=n_%7Bfuel%7D%20%3D%20%5Cdfrac%7B-7.315%20%5Ctimes%2010%5E%7B4%7D%20%5C%20kJ%7D%7B-4466.1%20%20%5C%20kJ%7D)
![n_{fuel} = 16.38 \ mol \ of \ C_7 H_{16](https://tex.z-dn.net/?f=n_%7Bfuel%7D%20%3D%2016.38%20%20%5C%20mol%20%5C%20of%20%5C%20C_7%20H_%7B16)
Since number of moles = mass/molar mass
The mass of the fuel is:
![m_{fuel } = 16.38 mol \times 100.198 \ g/mol}](https://tex.z-dn.net/?f=m_%7Bfuel%20%7D%20%3D%2016.38%20mol%20%5Ctimes%20100.198%20%5C%20g%2Fmol%7D)
![m_{fuel } = 1.641 \times 10^{3} \ g](https://tex.z-dn.net/?f=m_%7Bfuel%20%7D%20%3D%201.641%20%5Ctimes%2010%5E%7B3%7D%20%5C%20g)
Given that the density of the fuel is = 0.78 g/mL
and we know that :
density = mass/volume
therefore making volume the subject of the formula in order to determine the volume of the fuel ; we have
volume of the fuel = mass of the fuel / density of the fuel
volume of the fuel = ![\dfrac{1.641 \times 10^3 \ g }{0.78 g/mL} \times \dfrac{L}{10^3 \ mL}](https://tex.z-dn.net/?f=%5Cdfrac%7B1.641%20%5Ctimes%2010%5E3%20%5C%20g%20%7D%7B0.78%20%20g%2FmL%7D%20%5Ctimes%20%5Cdfrac%7BL%7D%7B10%5E3%20%5C%20mL%7D)
volume of the fuel = 2.104 L fuel