Explanation:
1. Newton's universal law of gravitation states that every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
2.Bottom because the direction of the gravitational force is always downward toward the center of the Earth ... where the winds are stronger; the mixing tends to reduce the air flow at the higher altitude. (I think its bottom).
Answer:
Presence of water molecules
Explanation:
Temperature decreases with an increase in altitude. At sufficiently high altitudes, the air is much colder than the air on the surface of the Earth. Water vapor has a low density and is capable to rise until it gets into a medium with a significantly low temperature and pressure to condense and produce water droplets out of water vapor. Those droplets then form clouds.
We know this because of the discovery of fossils and bones. We can find out roughly when they existed because of carbon dating.
Answer:
Y is a 3-chloro-3-methylpentane.
The structure is shown in the figure attached.
Explanation:
The radical chlorination of 3-methylpentane can lead to a tertiary substituted carbon (Y) and to a secondary one (X).
The E2 elimination mechanism, as shown in the figure, will happen with a simulyaneous attack from the base and elimination of the chlorine. This means that primary and secondary substracts undergo the E2 mechanism faster than tertiary substracts.
Compete Question:
What mass of CDP (403 g mol−1) is in 10 mL of the buffered solution at the beginning of Experiment 1?
Passage: "16 mmol of CDP in 1 L of buffer"
Answer:
6.4 × 10-2 g
Explanation:

we are given from the question that 16 mmol of CDP is in 1 L of buffer
this mean that we have
moles of CDP in 1 liter of buffer.
so the mass of CDP in one liter of buffer will be calculate as,
mass of CDP =
× 403g mol−1
=
= 6.4 g/L
But because the question
asks us about the mass of CDP in 10 mL of solution, we will go further to calculate it like this:
6.4 g/L × 10 mL
6.4 g/L × 0.01 L =