Answer:
the least common denominator between 4 and 9 is 36
Step-by-step explanation:
Answer:
<h3>6 days</h3>
Step-by-step explanation:
Given the inequality expression of the total cost (c) in dollars of renting a car for n days as c ≥ 125 + 50n
To get the maximum number of days for which a car could be rented if the total cost was $425, substitute c = 425 into the expression and find n
425 ≥ 125 + 50n
Subtract 125 from both sides
425 - 125 ≥ 125 + 50n - 125
300≥ 50n
Divide both sides by 50
300/50≥50n/50
6 ≥n
Rearrange
n≤6
<em>Hence the maximum number of days for which a car could be rented if the total cost was $425 is 6days</em>
<em></em>
Answer:
see explanation
Step-by-step explanation:
Given
2x² + x - 1 = 2 ( subtract 2 from both sides )
2x² + x - 3 = 0
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 3 = - 6 and sum = + 1
The factors are - 2 and + 3
Use these factors to split the x- term
2x² - 2x + 3x - 3 = 0 ( factor the first/second and third/fourth terms )
2x(x - 1) + 3(x - 1) = 0 ← factor out (x - 1) from each term
(x - 1)(2x + 3) = 0
Equate each factor to zero and solve for x
x - 1 = 0 ⇒ x = 1
2x + 3 = 0 ⇒ 2x = - 3 ⇒ x = - 
Answer:
f(9)=54
Step-by-step explanation:
Subsitute 9 for x in f(x)=6x

Part A)
If f(x) - 3 is the new equation, it means there is a vertical translation of f(x) down 3 units. The y-intercept will decrease by 3 units. Areas of increasing on the function may be lessened as the function is being translated down 3 units. The areas of decrease will increase because the function is being translated down. End behaviour will not change from a translation as long as the function is continuous at each end, (not a finite function with end points). The evenness or oddness of f(x) will not change either.
Part B:
The y-intercept will be flipped horizontally about the x-axis and multiplied by 2. This will mean that if the y-intercept was positive, it will now be negative and vice versa. The increasing and decreasing regions of the graph will be flipped, so anywhere f(x) was positive will now be negative and vice versa. They will also be double what they were before because all values are multiplied by 2. The end behaviour will switch. If f(x) was from Quad1->Quad3 for example, it will now be Quad2->Quad4 because of the flip at the x-axis. The evenness and oddness of the function will not change seeing as the degree of f(x) is not affected.