Answer:
The most likely outcome is that carrier protein dysfunction will increase the gradient which will lead to disruption of cellular metabolism.
1) ideal gas law: p·V = n·R·T.
p - pressure of gas.
V -volume of gas.
n - amount of substance.
R - universal gas constant.
T - temperature of gas.
n₁ = 0,04 mol, V₁ = 0,06 l.
n₂ = 0,07 mol, V₂ = 0,06 · 0,07 ÷ 0,04 = 0,105 l.
2) V₁ = 0,06 l, T₁ = 240,00 K.
T₂ = 340,00 K, V₂ = 340 · 0,06 ÷ 240 = 0,05 l.
The correct answer is letter (A) Acetylene. Acetylene is the most simplest form of alkyne and at the same time a hydrocarbon. It is unsaturated because of the presence of only two carbon atoms that are bonded together in a triple bond. I<span>n its pure, it is unstable and thus, it is usually held and handled as a solution.</span>
Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>
Answer:
Sorry pal! Didn't understand your language.
:(
Explanation: