Answer:
heres the link of the answer
boldniwally.com
Answer:
5.6 seconds
Explanation:
The reaction follows a zero-order in dinitrogen monoxide
Rate = k[N20]^0 = change in concentration/time
[N20]^0 = 1
Time = change in concentration of N2O/k
Initial number of moles of N2O = 300 mmol = 300/1000 = 0.3 mol
Initial concentration = moles/volume = 0.3/4 = 0.075
Number of moles after t seconds = 150 mmol = 150/1000 = 0.15 mol
Concentration after t seconds = 0.15/4 = 0.0375 M
Change in concentration of N2O = 0.075 - 0.0375 = 0.0375 M
k = 0.0067 M/s
Time = 0.0375/0.0067 = 5.6 s
Answer:
-2.80 × 10³ kJ/mol
Explanation:
According to the law of conservation of energy, the sum of the heat absorbed by the bomb calorimeter (Qcal) and the heat released by the combustion of the glucose (Qcomb) is zero.
Qcal + Qcomb = 0
Qcomb = - Qcal [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Qcal = C × ΔT = 4.30 kJ/°C × (29.51°C - 22.71°C) = 29.2 kJ
where,
C: heat capacity of the calorimeter
ΔT: change in the temperature
From [1],
Qcomb = - Qcal = -29.2 kJ
The internal energy change (ΔU), for the combustion of 1.877 g of glucose (MW 180.16 g/mol) is:
ΔU = -29.2 kJ/1.877 g × 180.16 g/mol = -2.80 × 10³ kJ/mol
Answer:
it would expand
Explanation:
the gummy bear would absorb alot of water