Answer:
<h2>3.31 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 23.2 g
volume = final volume of water - initial volume of water
volume = 62 - 55 = 7 mL
We have

We have the final answer as
<h3>3.31 g/mL</h3>
Hope this helps you
Answer: -
C. The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
The kinetic energy of gas molecules increase with the increase in the temperature of the gas. With the increase in kinetic energy, the gas molecules also move faster. Thus with the increase of temperature, the speed of the molecules increase.
Temperature of first hydrogen gas sample is 10 °C.
10 °C means 273+10 = 283 K
Thus first sample temperature = 283 K
The second sample temperature of the hydrogen gas is 350 K.
Thus the temperature is increased.
So both the kinetic energy and speed of molecules is more for the hydrogen gas sample at 350 K.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Hence the answer is C.
Solution because a solution cannot be separated by hand
Answer:
a) 6.3 cm
b) 8.0 cm
c) 0.7875
Explanation:
(a) The compound has moved above upto 7.3 cm from the bottom of the paper. Let us assume that line is drawn at 1.0 cm mark as the origin of spot. \
Distance traversed by compound= 7.3 - 1.0 cm = 6.3 cm
(b) Distance traversed by the solvent = 9.0 - 1.0 cm = 8.0 cm
(c) The Rf = Compound Migration distance / Solvent front migration distance
= 6.3/8.0 = 0.7875
Answer:

Explanation:
2H₂O₂ ⟶ 2H₂O + O₂
A catalyst is a substance that speeds up a reaction but can be recovered unchanged at the end.
Thus, at the end of the reaction I would expect to find H₂O and MnO₂ in the container.
Water is not listed in any of the options, so I will have to choose
.
A, B, and D are wrong. They are not reactants, products, or catalysts.