Answer:
1st law known as low of inertial
2nd law of acelaration and force relationship
3rd law of action and reaction
To solve this problem we will apply the concepts related to the conservation of momentum. Momentum can be defined as the product between mass and velocity. We will depart to facilitate the understanding of the demonstration, considering the initial and final momentum separately, but for conservation, they will be later matched. Thus we will obtain the value of the mass. Our values will be defined as




Initial momentum will be


After collision

Final momentum


From conservation of momentum

Replacing,





Answer:
Mars2 illuminated side of the planet is very heat, dark side very cool
Venus 2 a warm planet with a constant temperature across the entire surface
Explanation:
For this hypothetical case, when changing the planets they are changed with their current characteristics.
Case of Mars2
In this case, there is a planet with a very thin atmosphere, so the solar radiation reaches the ground without damping it, causing a lot of noise, so the illuminated side of the planet is very heat and when the dark side turns due to the little atmosphere it loses everything the heat for which it is very cold.
This thermal stress between the two sides of the planet continues constantly creating possible fruit trees in its rocky systems.
Case of Venus 2
The planet has a high atmospheric density, but it is very far from the sun, so the amount of radiation that arrives slightly warms the planet, but due to the thin atmosphere the losses for the dark period are very small, so the entire planet it is heated until it reaches an almost uniform temperature over its entire surface.
In this case we have a warm planet with a constant temperature across the entire surface, regardless of which side is lit.
A wave that is traveling fast can be said to have a high speed.<em> (b) </em>
Just like a car, motorcycle, or freight train that is traveling fast.
Answer:
<em>Choice: c. 6sec</em>
Explanation:
<u>Horizontal Launch
</u>
When an object is thrown horizontally with a speed (v) from a height (h), it describes a curved path ruled by gravity until it finally hits the ground.
The horizontal component of the velocity is always constant because no acceleration exists in that direction, thus:

The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

Where 
To calculate the time the object takes to hit the ground, we use the same formula as for free-fall, since the time does not depend on the initial speed:

The marble rolls the edge of the table at a height of h=180 m, thus:


t = 6 sec
Choice: c. 6sec