1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
3 years ago
6

What two forces are there when you skydive

Physics
2 answers:
dusya [7]3 years ago
7 0
Gravity is pulling you down and friction is slowing you down so you don't plummet to the ground at super high speeds.
Usimov [2.4K]3 years ago
7 0
1). The force of bravado, machismo, and testosterone, propelling you forward, to DO THIS and impress your woman.

2). The force of reason and self preservation, telling you that this is crazy, and you must NOT jump out of a perfectly good airplane that's not on the ground.
You might be interested in
How to write a composition about the shopping day​
NeX [460]
Just explain the day of how you were shopping and there you have it
5 0
3 years ago
What type of wave allows you to hear sounds?
DIA [1.3K]
Electromagnetic transverse waves
8 0
3 years ago
Read 2 more answers
The force of gravity on a person or object on the surface of a planet is called
viva [34]

Answer:

D. Weight

Explanation:

Hope that helps:)

3 0
3 years ago
Read 2 more answers
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
What is the kinetic energy of a bicycle with a mass of 16 kg traveling at a velocity of 5 m/s
fenix001 [56]

Answer:

200J

Explanation:

K.E=½mv²

K.E=½×16kg×5m/s²

K.E=8kg×25

K.E=200J

4 0
3 years ago
Other questions:
  • Consider a point located equidistant from point charges A and B, labeled C in the diagram. If A and B have the same magnitude ch
    10·1 answer
  • A jet plane flying 600 m/s experiences an acceleration of 4.0 g when pulling out of the circular section of a dive. What is the
    12·1 answer
  • Does the fastest car always travel the farthest?
    9·1 answer
  • The unit of mass is fundamental unit​
    6·2 answers
  • Resistance in wires causes electrical energy to be converted to what form of energy? sound chemical energy nuclear energy therma
    8·1 answer
  • .In the Highscope curriculum _____and _____ are active partners in shaping the educational experience
    6·1 answer
  • Every morning Mr. Jason travels to school 20 miles and it takes him to get there 30 minutes. How fast was he traveling?
    5·2 answers
  • 3. If you change the resistance of the resistor:
    10·1 answer
  • The loudness of a sound is determined by the __________, or height, of the sound wave.
    11·1 answer
  • Meteorologists are interested in the relationship between minimum pressure and maximum wind speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!