It’s 45 the plane flying from the north
Archimedes' principle states that a body immersed in a fluid is subjected to an upwards force equal to the weight of the displaced fluid. This is a first condition of equilibrium. We consider that the above force, called force of buoyancy, is located in the centre of the submerged hull that we call centre of buoyancy.
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increase. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.
Answer:
The time taken by the rock to reach the ground is 0.569 seconds.
Explanation:
Given that,
A student throws a rock horizontally off a 5.0 m tall building, s = 5 m
The initial speed of the rock, u = 6 m/s
We need to find the time taken by the rock to reach the ground. Using second equation of motion to find it. We get :

So, the time taken by the rock to reach the ground is 0.569 seconds. Hence, this is the required solution.
The new frequency of oscillation when the car bounces on its springs is 0.447 Hz
<h3>Frequency of oscillation of spring</h3>
The frequency of oscillation of the spring is given by f = (1/2π)√(k/m) where
- k = spring constant and
- m = mass on spring
Now since k is constant, and f ∝ 1/√m.
So, we have f₂/f₁ = √(m₁/m₂) where
- f₁ = initial frequency of spring = 1.0 Hz,
- m₁ = mass of driver,
- f₂ = final frequency of spring and
- m₂ = mass on spring when driver is joined by 4 friends = 5m₁
So, making f₂ subject of the formula, we have
f₂ = [√(m₁/m₂)]f₁
Substituting the values of the variables into the equation, we have
f₂ = [√(m₁/m₂)]f₁
f₂ = [√(m₁/5m₁)]1.0 Hz
f₂ = [√(1/5)]1.0 Hz
f₂ = 1.0 Hz/√5
f₂ = 1.0 Hz/2.236
f₂ = 0.447 Hz
So, the new frequency of oscillation when the car bounces on its springs is 0.447 Hz
Learn more about frequency of oscillation of spring here:
brainly.com/question/15318845