Answer:
The distance away the center of the earthquake is 1083.24 km.
Explanation:
Given that,
Speed of transverse wave = 9.1\ km/s
Speed of longitudinal wave = 5.7 km/s
Time = 71 sec
We need to calculate the distance of transverse wave
Using formula of distance

....(I)
The distance of longitudinal wave
....(II)
From the first equation

Put the value of t in equation (II)




Hence, The distance away the center of the earthquake is 1083.24 km.
According to Ideal gasTo solve this problem, the fastest relationship allows us to observe the proportionality between the two variables would be the one expressed in the ideal gas equation, which is

Here
P = Pressure
V = Volume
N = Number of moles
R = Gas constant
T = Temperature
We can see that the pressure is proportional to the temperature, then

This relationship can be extrapolated to all the scenarios in which these two variables are related. As the pressure increases the temperature increases. The same goes for the pressure in the atmosphere, for which an increase in this will generate an increase in temperature. This variable can be observed in areas of different altitude. At higher altitude lower atmospheric pressure and lower temperature.
Answer:
A super conductor is a perfect conductor that has zero resistance. It doesn't just have very low resistance and conducts electricity well, it has ZERO resistance and conducts electricity perfectly with no losses at all
Answer:

Explanation:
Given that,
The mass of the paperclip, m = 1.8 g = 0.0018 kg
We need to find the energy obtained. The relation between mass and energy is given by :

Where
c is the speed of light
So,

So, the energy obtained is
.
<h2>
Answer: Pulsars</h2>
A <u>pulsar</u> is a neutron star that emits very intense electromagnetic radiation at short and periodic intervals ( rotating really fast) due to its intense magnetic field that induces this emission.
Nevertheless, it is important to note that all pulsars are neutron stars, but not all neutron stars are pulsars.
Let's clarify:
A neutron star, is the name given to the remains of a supernova. In itself it is the result of the gravitational collapse of a massive supergiant star after exhausting the fuel in its core.
Neutron stars have a small size for their very high density and they rotate at a huge speed.
However, the way to know that a pulsar is a neutron star is because of its high rotating speed.