There are two naturally occurring isotopes of gallium: mass of Ga-69 isotope is 68.9256 amu and its percentage abundance is 60.11%, let the mass of other isotope that is Ga-71 be X, the percentage abundance can be calculated as:
%Ga-71=100-60.11=39.89%
Atomic mass of an element is calculated by taking sum of atomic masses of its isotopes multiplied by their percentage abundance.
Thus, in this case:
Atomic mass= m(Ga-69)×%(Ga-69)+X×%(Ga-71)
From the periodic table, atomic mass of Ga is 69.723 amu.
Putting the values,

Thus,

Rearranging,

Therefore, mass of Ga-71 isotope is 70.9246 amu.
Answer:
False
That is a chemical change
Mechanical waves are classified according to transverse waves.
For this problem we assume that oxygen is an ideal gas. So, we use the equation PV=nRT where P is pressure, V is the volume, n is the number of moles, R is a universal constant and T is the temperature. We first solve for the number of moles n. Then, using the molar mass of oxygen we convert it to grams.
PV=nRT
n = PV / RT
n = 3.23 (8.5) / 0.08206 (32+273.15)
n = 1.0964 mol
mass = 1.0964 mol (32g / 1 mol) = 35.09 g O2