<u>0.219 moles </u><u>moles are present in the flask when the </u><u>pressure </u><u>is 1.10 atm and the temperature is 33˚c.</u>
What is ideal gas constant ?
- The ideal gas constant is calculated to be 8.314J/K⋅ mol when the pressure is in kPa.
- The ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas.
- The combined gas law relates pressure, volume, and temperature of a gas.
We simple use this formula-
The basic formula is PV = nRT where. P = Pressure in atmospheres (atm) V = Volume in Liters (L) n = of moles (mol) R = the Ideal Gas Law Constant.
68F = 298.15K
V = nRT/P = 0.2 * 0.08206 * 298.15K / (745/760) = 4.992Liters
n = PV/RT = 1.1atm*4.992L/(0.08206Latm/molK * 306K)
n = 0.219 moles
Therefore, 0.219 moles moles are present in the flask when the pressure is 1.10 atm and the temperature is 33˚c.
Learn more about ideal gas constant
brainly.com/question/3961783
#SPJ4
Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.
Answer:
∴ Fractional distillation is the technique used to separate the fraction
Explanation:
A: Refinery gas
B: Gasoline fraction
C: Naphtha
D: Kerosene
E: Diesel Oil
F: Fuel oil fraction
G: Lubricating fraction
H: Bitumen
Answer:
i don't understand your question.
Explanation:
Too confusing to read
Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation.
<h3>What is the use of stereochemistry?</h3>
Using stereochemistry, chemists can work out the relationships between different molecules that are made up from the same atoms. They can also study the effect on the physical or biological properties these relationships give molecules.
<h3>Why is it called stereochemistry?</h3>
The term “stereochemistry” is derived from the Greek “stereos” meaning solid—it refers to chemistry in three dimensions. Since nearly all organic molecules are three dimensional (with the exception of some olefins and aromatics to be discussed later), stereochemistry cannot be considered a branch of chemistry.
Learn more about stereochemistry here:
<h3>
brainly.com/question/13266152</h3><h3 /><h3>#SPJ4</h3>