Answer:
1.15 atm
Explanation:
According to Dalton's law of partial pressures, the total pressure is the sum of all the partial pressures of the gases present in the mixture.
Therefore we have:
Total pressure = partial pressure of carbon monoxide + partial pressure of oxygen + partial pressure of carbon dioxide
We were given the following:
Total pressure = 2.45 atm
Pressure of oxygen = 0.65 atm
Pressure of carbon monoxide = x
Pressure of carbon dioxide = 0.65 atm
Therefore:
2.45 = x + 0.65 + 0.65
2.45 = x + 1.3
x = 2.45 - 1.3
x = 1.15 atm
Sorry this will probably be pretty long.
So think of the "control" as being something you yourself add to increase or decrease the effects in an experiment.
I'll give you an example so it is not as confusing.
Say you have decided to make an experiment on plants. Which plant can grow the fastest on which type of liquid? What is being added to this experiment? The liquid! Or all of the liquids you used. Like if you used Coke, Lime Gatorade, Orange Gatorade, and Water. Each drink will EFFECT each plant differently.
Hope I was of any hope?
There are six liquids found on the periodic table.
1. Bromine
2. Mercury
3. Caesium
4. Gallium
5. Rubidium
6. Francium
Answer:
Explanation: The molar mass and molecular weight of Cr2(SO3)3 is 344.182.
<u>Answer:</u> The rate law expression for the given reaction is written below.
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^2[H_2]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BH_2%5D%5E2)
Hence, the rate law expression for the given reaction is written above.