C. north to south because opposite feilds attract each other.
250.00 mL) x (1.0 M ) / (2.5 M) = 100 mL
So take 100 mL of 2.5 M HCl and dilute it to 250 mL.
Answer:
position: one compound becomes 2 separate elements
synthesis: two seperate elements combining into 1 compound
single replacement: a separate element and compound switch a component
double displacement: two compounds switch elements
this is just kinda restating what red text said but this is simpler ig
Answer:
The theoretical yield of Cu(s) in moles is 60.15 moles
Explanation:
Step 1: Data given
Number of moles CuO = 70.8 moles
Number of moles NH3 = 40.1 moles
Molar mass CuO = 79.545 g/mol
Molar mass NH3 = 17.03 g/mol
Step 2: The balanced equation
3CuO(s) + 2NH3(g) → 3H2O(l) + 3Cu(s) + N2(g)
For 3 moles CuO we need 2 moles NH3 to produce 3 moles H2O, 3 moles Cu and 1 mol N2
NH3 is the limiting reactant. It will completely be consumed (40.1 moles). CuO is in excess. There will react 3/2 * 40.1 = 60.15 moles
There will remain 70.8 - 60.15 = 10.65 moles CuO
Step 3: Calculate moles Cu
For 3 moles CuO we need 2 moles NH3 to produce 3 moles H2O, 3 moles Cu and 1 mol N2
For 40.1 moles NH3 we'll have 60.15 moles Cu
The theoretical yield of Cu(s) in moles is 60.15 moles
Question:
The options are;
a. Temperature
b. Thermal Energy
c. Hotness
d. Fire Energy
Answer:
The correct option is;
b. Thermal energy
Explanation:
A burner on a stove produces thermal energy which is used to raise the temperature of the metal container (kettle, pot or pans) in which items are placed for heating.
Thermal energy is the internal energy of the system given off as heat which when transferred from one body to another causes the temperature of the receiving body to rise. Thermal energy in a burner is given off when the gaseous fuel reacts or burns in the presence of or with oxygen to produce carbon dioxide and water vapor in an exothermic reaction.
4C + 5H₂ + 13/2O₂ (-125 kJ) → C₄H₁₀ + O₂ → CO₂ + H₂O (-2877 kJ).