Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4
Answer:
$12.60 is the new price!
Step-by-step explanation:
20 x 0.7 = 14
14 x 0.9 = 12.6
Hope this helped!
Answer:
Step-by-step explanation:
if it is (4)^(1/4) ft.

if it is (4^1)/4
then

Answer:
If m is nonnegative (ie not allowed to be negative), then the answer is m^3
If m is allowed to be negative, then the answer is either |m^3| or |m|^3
==============================
Explanation:
There are two ways to get this answer. The quickest is to simply divide the exponent 6 by 2 to get 6/2 = 3. This value of 3 is the final exponent over the base m. Why do we divide by 2? Because the square root is the same as having an exponent of 1/2 = 0.5, so
sqrt(m^6) = (m^6)^(1/2) = m^(6*1/2) = m^(6/2) = m^3
This assumes that m is nonnegative.
---------------------------
A slightly longer method is to break up the square root into factors of m^2 each and then apply the rule that sqrt(x^2) = x, where x is nonnegative
sqrt(m^6) = sqrt(m^2*m^2*m^2)
sqrt(m^6) = sqrt(m^2)*sqrt(m^2)*sqrt(m^2)
sqrt(m^6) = m*m*m
sqrt(m^6) = m^3
where m is nonnegative
------------------------------
If we allow m to be negative, then the final result would be either |m^3| or |m|^3.
The reason for the absolute value is to ensure that the expression m^3 is nonnegative. Keep in mind that m^6 is always nonnegative, so sqrt(m^6) is also always nonnegative. In order for sqrt(m^6) = m^3 to be true, the right side must be nonnegative.
Example: Let's say m = -2
m^6 = (-2)^6 = 64
sqrt(m^6) = sqrt(64) = 8
m^3 = (-2)^3 = -8
Without the absolute value, sqrt(m^6) = m^3 is false when m = -2