I encountered this problem before but it had an accompanying image and list of answer choices.
I'll attach the image and include the list of options.
Each unit on the grid stands for one mile. Determine two ways to calculate the distance from Josie's house to Annie's house.
A) Distance Formula and Slope Formula
B) Midpoint Formula and Slope Formula
C) Distance Formula and Midpoint Formula
<span>D) Distance Formula and Pythagorean Theorem
</span>
My answer is: D.) Distance formula and Pythagorean Theorem.
When looking at the image, I can visualize a right triangle. I'll simply get the measure of the long and short legs and solve for the hypotenuse.
Since the distance formula is derived from the Pythagorean theorem, it can be used to determine the distance from Josie's house to Annie's house.
Answer:
140/3 or 46.6(with the 6 repeating)
Step-by-step explanation:
(x+55)+(2x-15)=180
Answer:
P(X>4)= 0.624
Step-by-step explanation:
Given that
n = 10
p= 0.5 ,q= 1 - p = 0.5
Two fifth of 10 = 2/5 x 10 =4
It means that we have to find probability P(X>4).
P(X>4)= 1 -P(X=0)-P(X=1)-P(X=2)-P(X=3)-P(X=4)
We know that





P(X>4)= 1 -P(X=0)-P(X=1)-P(X=2)-P(X=3)-P(X=4)
P(X>4)= 1 -0.0009 - 0.0097 - 0.043 - 0.117-0.205
P(X>4)= 0.624
9514 1404 393
Answer:

Step-by-step explanation:
The Pythagorean theorem tells you that the area of the square with side 'a' is the difference of the areas of the other two squares.
a² = 7² -4²
a² = 49 -16 = 33
a = √33
If the circle has the same center as the diagonals of a square and the radius of the circle is smaller than 1/2 the diagonal of the square but larger than 1/2 the length of the side of a square, then there are 8 points of intersection -- 2 at each corner of the square.
If the radius of the circle is smaller than 1/2 the side length of the square and the center is as described above, there are no points of intersection.
If the circle is located outside the square it can have 1 tangent point or 2 intersection points depending on the location conditions of the circle in relation to the square.