Answer:
There is no mechanical advantage
Explanation:
The mechanical advantage is possible only when the force needed to lift a load is lesser than the weight of the load.
For example, is we have a mechanical advantage of 2, the force needed to lift will be 1/2 of the weight of the load, and if we have a mechanical advantage of 4, the force needed will be 1/4 of the weight of the load.
In the attached image there are clear examples of mechanical advantage with pulleys.
Answer:
State A = piece of metal; State B = air
Explanation:
For the three main states of matter here's how it breaks down.
Solid - Cannot be compressed and retains its shape
Liquid - Cannot be compressed and does not retain its shape
Gas - Compressible and does not retain its shape.
Knowing this State A has to be solid. Only one of the options has A as a solid, so that's the answer. Worth knowing state B is a gas though, only one compressible, just like solid is the only one that retains its shape.
Answer:
Electric current is electric charge in motion. It can take the form of a sudden discharge of static electricity, such as a lightning bolt or a spark between your finger and a ground light switch plate. ... Most electric charge is carried by the electrons and protons within an atom.
Explanation:
because it is
Answer:
they help us allocate a particular place in case one needs to allocate or find a place or something
Answer:
Please see below as the answers are self-explanatory
Explanation:
a)
- A electric field line is an imaginary line, which has the property that the electric field vector is tangent to it at any point. It starts from positive charges (since the electric field by convention it has the direction of the trajectory that would take a positive test charge, so it always goes away from positive charges) and ends in negative charges.
b)
- Since the potential difference between two points represents the work per unit charge needed for a charge to move between these points, a equipotential surface is the one over which it is not needed to do work to move a charge from any point on the surface to any other point, which means that all points are at the same potential.
c)
- Equipotential surfaces are not necessarily physical surfaces, they can be defined in vaccum for instance.
- As an example, any spherical surface concentric with a point charge, is an equipotential surface, and it can be a real surface or a fictitious one.