Answer: 405.3 minutes
Explanation: In order to explain this problem we have to use the following:
Fisrtly we calculate the volume of the wire, this is given by:
Vwire=π*r^2*L where r and L are the radius and L the length of teh wire, respectively.
Vwire=π*1.25*10^-3*0.26=1.27*10^-6 m^3
then the number of the total electrons in tthe wire volume is given by;
n° electrons in the wire=ρ*Vwire=8.4*10^28*1.27*10^-6 m^3=1.07 *10^23
Finally, considering the current in the wire equal to 4.4*10^18 electrons/s
the time consuming to extract all the electrons from the wire is given by:
t= total electrons in the wire/ current=1.067*10^23/4.4*10^18=24,318 s
equivalent to 405.3 minutes
The density of silver is ρ = 10500 kg/m³ approximately.
Given:
m = 1.70 kg, the mass of silver
t = 3.0 x 10⁻⁷ m, the thickness of the sheet
Let A be the area.
Then, by definition,
m = (t*A)*ρ
Therefore
A = m/(t*ρ)
= (1.7 kg)/ [(3.0 x 10⁻⁷ m)*(10500 kg/m³)]
= 539.7 m²
Answer: 539.7 m²
Answer:
B. The number of electrons emitted from the metal per second increases.
Explanation:
Light consists of photons . Energy of each photon depends upon frequency of light . The increase in intensity increases the number of photons . It does not increase energy of photons .
So if a high intensity light falls on a photosensitive plate , each photon ejects one electron . So number of electrons increases if we increase intensity of photon. It does not increase kinetic energy of ejected electrons . Work function depends upon the nature of plate.
Answer:
-3 m
Explanation:
Displacement is the final position minus the initial position.
Δx = x − x₀
Δx = -3 m − 0 m
Δx = -3 m
Answer:
Apply this to waves: count the number of waves passing each second (= frequency), and multiply by the length of each (= wavelength) to find the speed. speed = distance/time = l/T= l / (1/f) = f λ. Work through three examples: A simple example, perhaps for sound in air, with values in Hz and m.
Explanation:Apply this to waves: count the number of waves passing each second (= frequency), and multiply by the length of each (= wavelength) to find the speed. speed = distance/time = l/T= l / (1/f) = f λ. Work through three examples: A simple example, perhaps for sound in air, with values in Hz and m.
Amplitude is the fluctuation or displacement of a wave from its mean value. With sound waves, it is the extent to which air particles are displaced, and this amplitude of sound or sound amplitude is experienced as the loudness of sound
But it seems that in some circumstances, sound can jump between objects in a vacuum after all. Sound waves are travelling vibrations of particles in media such as air, water or metal. So it stands to reason that they cannot travel through empty space, where there are no atoms or molecules to vibrate.