We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
Answer:
1,3
Explanation:
As the acceleration is -10m/s^2 , that means deceleration is occurring. That means, the object is slowing down.
v=u-at
or, 0=80-10t
or, t=8 seconds
So, the object will stop in 8 seconds.
So, the correct answers are 1 and 3.
Hope, this helps you.
The Law of Conservation of Energy states that, in an isolated system, energy remains constant and can not be created or destroyed, only transferred from one form to another. This law was created by Julius Robert Mayer.
D. There are two phosphate ions in a molecule of magnesium phosphate
<span>Venus is hotter due to the greenhouse effect: Venus has an atmosphere about ninety times thicker than that of Earth, and made almost entirely of carbon dioxide, which is one of the gasses that causes the greenhouse effect on Earth.</span>